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Stereoisomerically pure endo- and exo-7-halo-7-(trimethylstannyl)benzonorcar-3-enes (= endo- and
exo-(1-halo-1a,2,7,7a-tetrahydro-1H-cyclopropa[ b |naphthalen-1-yl)trimethylstannane) 4 and 6 were
selectively obtained by lithium—tin or magnesium—tin transmetalation in good yields (Scheme 2 and
3). The reaction of these compounds with copper(I) thiophene-2-carboxylate (CuTC) produced in both
cases the corresponding Cs-symmetric bicyclopropylidene (=cyclopropylidenecyclopropane) syn-1, a
single diastereoisomer (Schemes 5 and 6). The structure of syn-1 was undoubtedly elucidated by X-ray
single crystal diffraction. The coupling mechanism of the carbenoid cyclopropane is discussed
(Scheme 7).

Introduction. — Bicyclopropylidenes (= cyclopropylidenecyclopropanes) display a
wide reactivity, ranging from the expected reactions of a tetrasubstituted olefin with
electrophiles to the intriguing cascade-reaction recently reported by de Meijere and co-
workers. [1]. Many procedures for the preparation and derivatization of bicyclopro-
pylidenes are reported [1][2], including coupling of carbenes generated in situ from
gemminally dihalo-substituted cyclopropanes [3], which, in turn, can be obtained by
dihalocarbene insertion in C=C bonds. The research groups have, for a long time, been
involved in the study of coupling reactions promoted by copper salts [4], and recently
our attention focused on the masked carbene functionality of gemminally-bromo(-
trimethylstannyl)-substituted cyclopropanes. In this article, we describe an efficient and
highly stereoselective synthetic methodology for the preparation of the contrasteric
syn-la,1’a,2,2'.7, 7' 7a,7"a-octahydro-1,1'-bi[cyclopropa[ b Jnaphthalenylidene] (syn-1)1)
(Fig. 1). This compound has been previously synthesized by Banwell and co-workers, as
a mixture of syn- and anti-1in 7 and 11% yield, respectively [5].

1) The terms syn/anti in names and key numbers mean that a compound has a cage-like/stair-like
overall gross structure, cf. Fig. 1.
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Fig. 1. The two possible isomers of bicyclopropylidene 1

Results and Discussion. — The starting material 3 was readily obtained in two steps
from naphthalene, which was selectively reduced at the 1,4 positions [6] followed by
dibromocyclopropanation with tribromomethane and potassium tert-butoxide
(Scheme 1) [7].

Scheme 1. Synthesis of the Dibromo Adduct 3

Na, -BuOH CHBrj, {-BuOK Br
Et,0, reflux, 87% THF, r.t., 52% Br
3

2

Although the formation of bicyclopropylidenes can be accomplished by the use of
simple metalating agents [8], the yields and diastereoselectivities of these reactions are
not very good [3b][3i][5][9]. The use of bromostannanes with copper(I) as promoter
of the coupling reaction can provide milder conditions with an efficiency improvement.
When 77-dibromobenzonorcar-3-ene (=1,1-dibromo-1a,2,7,7a-tetrahydro-1H-cyclo-
propa[b]naphthalene; 3) was treated with BuLi at —78°, and the resulting anion was
quenched with chlorotrimethyltstannane, the endo-trimethylstanyl derivative endo-4?)
was isolated as the sole product in 90% vyield (Scheme 2). The configuration was
confirmed by a NOESY experiment: the scalar correlation between the Me groups and
the endo benzylic H-atoms was in good agreement with distances observed in
minimized models (MacSpartan Plus, semi-empirical, PM3 basis set), which resulted in
2.32 and 4.29 A for the endo- and exo-(trimethylstannyl) derivatives, respectively. The
remarkable diastereoselectivity observed with substrate 3 matched the previously
reported results obtained with 2-oxa-7,7-dibromonorcarane [10], 7,7-dibromonorcar-
ane [9d][11], and 7,7-dibromonorcar-2-ene [12].

Scheme 2. Reaction of Dibromonorcarane Derivative 3 with BuLi/Me;SnCl

Br, Br MesSn  Br

1. BuLi
2. Me3SnCl

3 endo-4

2)  The terms endo/exo in names and key numbers mean that the senior of the geminal substitutents is
on the concave/convex side of the molecule, cf. Schemes 2—4 and 7.



HEeLveTICA CHIMICA ACTA — Vol. 96 (2013) 943

However, the use of Mg as the metalating agent in the reaction of dibromonorcar-3-
ene derivative 3 with Me,;SnCl produced a complex mixture consisting of exo-stannyl
isomer exo-4 as the major product along with products similar to those obtained by
treatment of 7,7-dibromonorcarane with an organomagnesium reagent (Scheme 3)
[13]. The endo-product endo-4 was formed in 22% yield, the reduction products endo-
and exo-5 in 3 and 2% yield, respectively, and the coupling product, syn- and anti-1in 1
and 3% yield. Compound exo-4 was isolated as a mixture with exo-6; all attempts
(chromatography, crystallization) to separate this mixture failed. However, the
protodestannylation reaction of all stannylated products, i.e., of endo-4, exo-4, and
ex0-6, with CF;COOH resulted in the formation of the corresponding reduced
products exo-5 [14], endo-5 [14], and endo-7 [15] which allowed us to characterize the
isolated products (Scheme 4). The attribution of the configuration of the monohalo-
substituted structures was also confirmed by the coupling constants between the H-
atoms of the cyclopropane moieties (J , was typically 8 Hz, while J,,,,, was typically
4 Hz) [16].

Scheme 3. Reaction of Dibromonorcarane Derivative 3 with Mg/Me;SnCl

Br. Br
3

1. Mg | 2. Me;SnCl
SnMeg MezSn  Br H Br
exo-4 (42%) endo-4 (22%) endo-5 (3%) €x0-5 (2%)

— T
CZ% N

ex0-6 (10%) syn-1 (1%) anti-1 (3%)

O’«

Copper(I) thiophene-2-carboxylate (CuTC) is a reagent successfully employed
either for couplings between unsaturated halides and stannanes [17], or between two
unsaturated halides [18] or stannanes [19]. Furthermore, it is one of the most efficient
reagents for the preparation of benzocyclotrimers from vicinally-bromo(stannyl)-
substituted olefins [4][20]. Treatment of endo-4 with a slight excess of CuTC in dry N-
methylpyrrolidin-2-one (NMP) at — 20° afforded the syn-coupling product syn-1 as the
sole isomer in 67% yield (Scheme 5). Careful analysis of the crude reaction mixture
('H-NMR, GC/MS) did not reveal the formation of any trace of other products such as
a trimer, which may be formed by further addition of the carbene to syn-1.
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Scheme 4. Protodestannylation of the Halo(trimethylstannyl) Compounds exo-4, endo-4, and exo-6 to
Confirm the Exact Configurations

Br. SnMes Cl SnMeg MezSn  Br
exo-4 exo-6 endo-4
100% l CF;COOH 100% l CF,COOH
Br, H Cl H H Br
endo-5 endo-7 exo-5

Scheme 5. Reaction of endo-4 with Copper(1) Thiophene-2-carboxylate (CuTC) in N-Methylpyrrolidin-

2-one (NMP)
MesSn  Br - >
CuTC
NMP Q Q
endo-4 syn-1(67%)

The configuration of syn-1 was established by X-ray crystallography that revealed
also peculiar and interesting structural features. The compound crystallized in a
monoclinic centrosymmetric space group P2,/n with four molecules in the unit cell. The
structure contains two 1a,2,7,7a-tetrahydro-1H-cyclopropa[b]naphthalene fragments
connected by a C=C (C(11)-C(12)=1.302 A) bond. The tetrahydronaphthalene
moieties are folded onto each other, as shown in the structure reported in Fig. 2. The
interplanar and centroid-to-centroid distances between the cofacial pair of benzene
moieties are 4.157(3) A and 4.247(3) A, respectively, and the dihedral angle between
the planes is 17.7(2)°. The cyclohexene fragments are also partially folded along the
C(15)---C(18) and C(7)---C(10) axis. The hinge angles between the cyclopropane
C(15)—C(14)—C(13)—C(18) and C(7)—C(8)—C(9)—C(10) planes are 112.0(2)° and
112.3(1)°, respectively. The molecular packing of syn-1 as viewed along the a-axis is
shown in Fig. 2. Translation symmetry in the crystal structure may be easily seen in the
unit cell along the diagonal axis.

Surprisingly, treatment of the mixture exo-4/exo-6 (ratio 4.2 :1) with CuTC under
the same reaction conditions afforded also formation of syn-1 as a major product (64% )
beside the isomeric anti-1 (2% ) (Scheme 6).

After having observed a strong selectivity in the coupling reaction of both
substrates exo- and endo-4, we propose the following mechanism for the formation of
the products. Copper—tin transmetalation is the most likely step to start the coupling
process, as previously observed in the case of vicinally-bromo(stannyl)-substituted
olefins [19]. In principle, the geminally subtituted-bromocuprates exo- and endo-8 can
eliminate CuBr to afford a carbene, which may undergo the dimerization reaction.
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Fig. 2. Molecular structure of syn-1 and molecular packing in syn-1 crystals viewed along the a-axis.
Thermal ellipsoids are drawn at the 40% probability level. Arbitrary atom numbering.

However, in this case, a diastereoselectivity would not be expected. The fact that syn-1
(which is the more sterically congested isomer) is formed in the coupling reaction of
endo-4 as the sole product indicates that a stepwise process is involved. We assume that
a hetero-coupling between two molecules of endo-8 takes place to form endo-9 with a
defined configuration by eliminating only one molecule of CuBr. Removal of a second
molecule of CuBr then gives syn-1 with the expected configuration (Scheme 7).

In conclusion, the results show that endo-4 and exo-4/exo-6 undergo stereoselective
reactions in which the Cu/Sn exchange is the preferred process. anti-Periplanar
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Scheme 6. Reaction of exo-4/exo-6 with Copper(I) Thiophene-2-carboxylate (CuTC) in N-methylpyrro-
lidin-2-one (NMP)
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Scheme 7. Formation Mechanism of the Major Product syn-1
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elimination of CuBr or CuCl furnishes the corresponding coupling product syn-1 nearly
as single diastereoisomer, where the configuration of the stannylated halo compounds
determine the configuration of the coupling products. The present study represents a
viable synthesis of the contrasteric bicyclopropylidene syn-1 and confirms the ability of
CuTC to promote Sn—Sn (preferentially) coupling process.

The authors are indebted to the Scientific and Technical Research Council of Turkey (TUBITAK
project No. TBAG-106T082) for financial supports. This work has also been supported by Atatiirk



HEeLvETICA CHIMICA ACTA — Vol. 96 (2013) 947

University and TUBA (Turkish Academy of Sciences), and was co-funded by MIUR (Rome) within the
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Experimental Part

General. All reactions were carried out under Ar and monitored by TLC and/or 'H-NMR. All
solvents were dried and distilled before use. Flash column chromatography (FC): silica gel (SiO,,
60 mesh; Merck). TLC: Merck 0.2 mm silica gel 60 F,s, on anal. aluminium plates. M.p.: uncorrected. 'H-
and BC-NMR Spectra 3): Varian-400 or Bruker-400 spectrometer; o in ppm rel. to Me,Si as internal
standard, J in Hz. All new compounds gave satisfactory elemental analyses.

endo-(1-Bromo-1a,2,77a-tetrahydro-1H-cyclopropa[b [naphthalen-1-yl)trimethylstannane (endo-4).
To a soln. of dibromide 3 [7] (1.0 g, 3.31 mmol) in dry THF (10 ml) at —78°, 2.5 BuLi in hexanes
(1.32 ml, 3.31 mmol) was added dropwise, and the resulting mixture was stirred for 1h at —78°.
Chlorotrimethylstannane (660 mg, 3.31 mmol) was added portionwise within 60 min. The mixture was
stirred for 2 h at — 78°. Then, the temp. was allowed to rise to r.t. overnight. The reaction was quenched
with H,O (50 ml), the mixture extracted with Et,O (3 x 30 ml), the combined extract dried (MgSO,) and
concentrated, and the residue purified by FC (hexane): endo-4 (1.15 g, 90% ). Colorless oil. IR (KBr):
3062, 3020, 2906, 2883, 1496, 1454, 1430, 1187, 1056, 1040, 773, 745. "H-NMR (400 MHz, CDCl;): 7.16 -
701 (AA'BB’, 4 arom. H); 3.18 (br. d, A of AB, J(2syn,2anti)=J(Tsyn,7anti)=173, 1 H-C(2),
1 H—C(7)); 3.03 (br. d, B of AB, J(2syn,2anti) =J(7syn,7anti) =173, 1 H-C(2), 1 H-C(7)); 2.05 (br. d,
J(1a,2anti) =J(7a,7anti) = 3.5, H-C(la), H-C(7a)); —0.04 (s, Me;Sn). "C-NMR (100 MHz, CDCl,):
134.4; 130.6; 127.3; 32.4; 29.4; 28.3; —5.3.

Mixture of exo- and endo-4/exo- and endo-5/ex0-6/syn- and anti-1. Mg (1.09 g, 44.90 mmol) was
added to a soln. of dibromide 3 (11.3 g, 37.42 mmol) in dry THF (100 ml) at r.t. in an ultrasonic bath.
Chlorotrimethylstannane (7.53 g, 37.79 mmol) was added portionwise. The mixture was stirred for 1 h at
r.t. The reaction was quenched with sat. NH,Cl soln. (95 ml) and the mixture extracted with Et,O (3 x
80 ml). The combined extract was dried (MgSO,) and concentrated and the crude residue subjected to
column chromatography (neutral Al,O; (450 g) hexane): endo-4 (3.2 g, 22%; see above, exo-5 (167 mg,
2%), exo-4lexo-6 4.2 :1 (7.35 g; by 'THNMR: exo-4 (6.07 g,42% ) and exo0-6 (1.28 g, 10%), endo-5 (250 mg,
3%), syn-1 (53 mg, 1% see below), and anti-1 (160 mg, 3%), in this order.

exo-1-Bromo-1a,2,7,7a-tetrahydro-1H-cyclopropa[b Jnaphthalene (exo-5): Colorless liquid. IR
(KBr): 3021, 2888, 2833, 1455, 1323, 1282, 1217, 1024, 749, 675. '"H-NMR (400 MHz, CDCl;): 7.14 (AA’
of AA'BB’, 2 arom. H); 7.02 (BB’ of AA'BB’, 2 arom. H); 3.15 (br. d, A of AB, J(2syn2anti)=
J(7syn,7anti) =15.8, 1 H-C(2), 1 H-C(7)); 3.06 (br. d, B of AB, J(2syn2anti)=J(7syn,7anti)=15.8,
1H-C(2),1 H-C(7));2.63 (t,J(1,1a) =J(1,7a) = 3.0, H—C(1)); 1.77 (m, H—C(1a), H-C(7a)). *C-NMR
(100 MHz, CDCl;): 134.0; 129.3; 126.8; 28.6; 22.0; 19.3. Anal. calc. for C;;H,,Br (223.11): C59.22, H 4.97;
found: C 59.77, H 4.96.

exo-(I-Bromo-1a,2,7,7a-tetrahydro-1H-cyclopropa[b Jnaphthalen-1-yl)trimethylstannane (exo-4):
From the mixture exo-4/exo-6 42:1: '"H-NMR (400 MHz, CDCl;): 7.14-7.08 (AA'BB’, 4 arom. H);
321 (ddd, A of AB, J(2syn2anti)=J(7syn,7anti)=16.5, J(syn,1a)=J(7syn,7a)=5.5, J(2syn,7a) =
J(7syn,la)=2.6, 1 H-C(2), 1 H-C(7)); 2.70 (br. d, B of AB, J(2syn, 2anti)=J(7syn,Tanti)=16.5,
1H-C(2), 1 H-C(7)); 1.38 (m, H-C(la), H-C(7a)); 0.19 (s, Me;Sn). "C-NMR (100 MHz, CDCl,):
136.4; 128.2; 125.6; 27.6; 24.9; 18.1; —9.7.

exo-(1-Chloro-1a,2,7,7a-tetrahydro-1H-cyclopropa[b Jnaphthalen-1-yl)trimethylstannane (exo-6):
From the mixture exo-4/exo-6 4.2:1 (only non-overlapped signals): "H-NMR (400 MHz, CDCl;): 3.12
(ddd, A of AB, J(2syn, 2anti)=J(7syn,7anti) =16.5, J(2syn,1a)=J(7syn,7a)=5.5, J(2syn,7a)=
J(7syn,la)=2.7, 1 H-C(2); 1 H-C(7)); 2.68 (br. d, B of AB, J(2syn2anti)=J(7syn,7anti)=16.5,
1 H-C(2), 1 H=C(7)). *C-NMR (100 MHz, CDCl;): 125.5; 37.2; 18.6; —10.1.

endo-1-Bromo-1a,2,77a-tetrahydro-1H-cyclopropa[b [naphthalene (endo-5): Colorless oil. IR
(KBr): 3061, 3019, 2939, 2894, 2840, 1495, 1455, 1429, 1257, 743, 646. '"H-NMR (400 MHz, CDCl;):

3)  The lable syn or anti refers to the position of a H-atom on the concave or convex side of a molecule.
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716-711 (AA'BB’, 4 arom. H); 3.53 (1, J(1,1a)=J(1,7a)="75, H-C(1); 3.21 (ddd, A of AB,
J(2syn,2anti) = J(7syn,Tanti) = 16.5, J(2syn,1a)=J(7syn,7a)=5.3, J(2syn,7a)=J(7syn,1a)=2.8,
1 H-C(2), 1 H-C(7)); 2.68 (br. d, B of AB, J(2syn,2anti) =J(7syn,7anti) =16.5, 1 H-C(2), 1 H-C(7));
1.55 (m, H—C(1a), H—C(7a)). BC-NMR (100 MHz, CDCl;): 136.0; 128.5; 126.0; 33.6; 26.3; 14.5. Anal.
calc. for C;;H;,Br: C 59.22, H 4.97; found: C 59.56, H 4.80.

anti-1a,1'a,2,2',77',7a,7 a-Octahydro-1,1'-bi[ IH-cyclopropa[b [naphthalenylidene] (=anti-la,2,77a-
Tetrahydro-1-(1a,2,7,7a-tetrahydro-1H-cyclopenta[b [naphtalen-1-ylidene)-1H-cyclopropa[b [naphtha-
lene; anti-1)'): Colorless crystals from CH,Cly/hexane 1:3. M.p. 239-240° ([5]: M.p. 228-232°). IR
(KBr): 2964, 2924, 2844, 1260, 1094, 1021, 864, 799, 748. '"H-NMR (400 MHz, CDCl;): 7.06-6.95
(AA'BB, 8 arom. H); 2.99 (m, 2H-C(2), 2 H-C(2), 2 H-C(7), 2 H-C(7")); 1.63 (m, H-C(la),
H-C(7a), H-C(1'a), H-C(7’a)). BC-NMR (100 MHz, CDCl;): 135.8; 128.7; 125.8; 118.0; 29.6; 14.4.
Anal. calc. for C,,H,,: C 92.91, H 7.09; found: C 92.89, H, 6.27.

syn-1a,1'a,2,2',7,7',7a,7 a-Octahydro-1,1'-bi[ IH-cyclopropa[b Jnaphthalenylidene] (=syn-1a,2,7,7a-
Tetrahydro-1-(1a,2,7,7a-tetrahydro-1H-cyclopropa[b [naphthalen-1-ylidene)-1H-cyclopropa[b Jnaphtha-
lene; syn-1)'). To copper(1) thiophene-2-carboxylate (CuTC; 1.73 g, 9.07 mmol) in a flask purged with Ar
and capped with a septum, dry NMP (25 ml) and bromo(stannyl) derivative endo-4 (1.0 g, 2.59 mmol)
were added consecutively via syringe at —20°. The mixture was stirred for 1 h at —20° and for 3 h at r.t.
(TLC monitoring). After completion of the reaction, 10% aq. NH; soln. (20 ml) was added, and the
slurry was stirred until the brown solid disappeared. The mixture was extracted with Et,O (3 x 20 ml),
the combined org. extract dried (MgSO,) and concentrated, and the residue purified by FC (hexane):
syn-1 (248 mg, 67% ). Colorless crystals from CH,Cl/hexane 1:3. M.p. 155-156° ([5]: M.p. 144-157°).
IR (KBr) 3058, 3019, 2991, 2966, 2911, 2889, 2829, 1493, 1454, 1435, 1300, 1113, 1041, 1004, 753, 739.
'H-NMR (400 MHz, CDCl;): 6.82-6.73 (AA'BB’, 8 arom. H), 2.97 (br. d, A of AB, J(2syn2anti)=
J(7syn,Tanti) =J(2'syn,2'anti) = J(7'syn,7'anti) =15.0,1 H-C(2), 1 H-C(2'), 1 H-C(7), 1 H-C(7')); 2.50
(br. d, B of AB, J(2syn,2anti)=J(7syn,7anti)=J(2'syn,2'anti) = J(7'syn,7'anti) =15.0, 1 H-C(2),
1H-C(2), 1H-C(7), 1 H-C(7)); 1.90 (m, H-C(la), H-C(7a), H-C(1'a), H-C(7'a)). *C-NMR
(100 MHz, CDCl;) 135.5; 128.3; 126.0; 118.8; 29.5; 14.7. EI-MS (70 eV): 285 (M*, 5), 267 (7), 240 (9),
180 (37), 153 (29), 142 (65), 129 (82), 116 (100), 105 (21), 91 (43), 66 (10).

X-Ray Crystal-Structure Determination of syn-14). For the crystal structure determination, the single
crystal of syn-1 was used for data collection on a four-circle Rigaku-R-AXIS-RAPID-S diffractometer
equipped with a two-dimensional area IP detector. The graphite-monochromatized MoK, radiation (A =
0.71073 A) and oscillation-scans technique with Aw =5° for one image were used for data collection.
Images for syn-1 were taken successfully by varying o with three sets of different y and ¢ values. The 108
images for six different runs covering ca. 99.7% of the Ewald spheres were performed. The lattice
parameters were determined by the least-squares methods on the basis of all reflections with F? > 20( F?).
Integration of the intensities, correction for Lorentz and polarization effects, and cell refinement was
performed with CrystalClear (Rigaku/MSC Inc., 2005) software [21]. The structure was solved by direct
methods SHELXS-97 [22], and non-H-atoms were refined by the full-matrix least-squares method with
anisotropic temperature factors SHELXL-97 [22]. Crystal data: Cy,H,,; crystal system monoclinic; space
group P2,/n (n0.14); unit cell dimensions: a = 8.8709(2), b =8.5274(2), ¢ =21.1090(3) A, f=95.92(2)°;
volume 1588.3(1) A3; Z=4; D, =1.19 Mg/m?; absorption coefficient 0.067 mm~*; F(000) 608; 6§ range for
data collection 2.4 -30.7°; refinement method: full-matrix least-square on F?; data and parameters, 4877
and 212; goodness-of-fit on F? 1.025; final R indices (I >20(I)): R, =0.070, wR,=0.183; R indices (all
data): R, =0.130, wR, =0.218; largest diff. peak and hole 0.160 and —0.182 e A3,

Reaction of exo-4/exo-6 4.2:1 with CuTC. As described for syn-1, with CuTC (1.74 g, 9.10 mmol),
NMP (25 ml), and halo(stannyl) derivatives exo-4/exo-6 4.2 :1 (790 mg of exo-4 + 188 mg of exo-6, total
2.60 mmol). FC (hexane) yielded syn-1 (236 mg, 64%) and anti-1 (7 mg, 2%) in this order.

4)  CCDC-643590 contains the supplementary crystallographic data for this article. These data can be
obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif.
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